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The International Comet Exploration spacecraft will spend 2.4 years in a solar electric
propulsion stage (SEPS) cruise mode, during which the health of the spacecraft will be
monitored at least once a day. Although a daily two-hour DSN pass is now planned, the
same surveillance function can be carried out by a much smaller, cheaper system. The
system studied here uses a commercial fast Fourier transform spectrum analyzer for
noncoherent, synchronous detection of an alternating-tone signal received by a small
parabolic antenna (0.8 to 3 m in diameter). Integration times vary from 3.7 to 9.5 min.

I. Proposed Surveillance Method

The proposed International Comet Exploration (ICE)
spacecraft will be capable of monitoring its own health during
the solar electric propulsion stage (SEPS) cruise mode. It
would transmit one of several signals (five, perhaps) whose
meanings range from “I'm OK” to “Help!” The signal would
be detected by a small, dedicated ground receiving system. If
the spacecraft says that it has a problem or if no signal is
detected, then a regular DSN tracking session would be
scheduled.

To reduce size, weight, and pointing accuracy requirements
we shall try to make the ground antenna as small as possible.
The data rate can be as low as one word (two or three bits) per
hour or per day. Under these circumstances we choose non-
coherent detection of a multiple frequency shift keyed
(MFSK) signal by a spectrum analyzer. The main problem is
acquisition of the signal, which is corrupted by oscillator phase
jitter, displaced by Doppler error, and smeared by Doppler
rate error. Consequently there is an upper bound on integra-
tion time, which in turn puts a lower bound on signal power,
no matter how much time is nominally available for detection.
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Section II and Fig. 1 describe the overall surveillance sys-
tem and set down the assumptions used in the analysis. Sec-
tion IIT and Table 1 give four numerical examples. The rest of
the article (up to Section VIII) consists of back-up material.
Sections IV and V derive certain mission-dependent param-
eters (signal power and Doppler rate error) needed by the
analysis, which is carried out in Sections VI and VII. Conclu-
sions are offered in Section VIII.

Il. Design Assumptions

A conceptual sketch of a surveillance system is given in
Fig. 1. We list and discuss our assumptions:

(1) The RF signal consists of alternating sine-wave tones
with frequencies 1, and f, , each held for the word time
T, (but see item (8) below). Such a signal is proposed
in Refs. 1 and 2 for MFSK acquisition. The difference
f1 - fo, having one of several possible values, consti-
tutes the message word. These values should be much
less than a priori Doppler uncertainty, discussed below.
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Perfect word synchronization is assumed. The word
time T, is long enough (several minutes), the range is
known well enough, and spacecraft time is accurate
enough for the ground system to know when the transi-
tions between f, and f, occur. Word sync can be
refreshed whenever the regular DSN tracks the space-
craft.

The short-term frequency stability of the spacecraft
oscillator that generates the signal is specified by a plot
similar to Fig. 2, which plots the square root of Allan
variance, Af/f,, vs. integration time 7. The behavior
shown is typical of quartz crystal oscillators. At 7,
there is a transition between the behaviors Af/f, =
const/r and Af/fo =0, = const. To avoid signal power
degradations above 1 dB we require

fooyrl <0.13 (1)

which comes from Eq. (13) below. Typically, 7, =0.5
sec, in which case

g <10 1'°
y

S-band

o, < 3Xx 10711 X-band

The transmitter power is 5 W for S-band, 10 W for
X-band. All the radiated power goes into the surveil-
lance signal. At present, X-band is actually not suitable
for this system (which is supposed to reduce the need
for DSN tracking) because X-band downlink requires
an uplink for pointing the spacecraft antenna. Never-
theless, we have provided X-band designs in case a
stand-alone X-band downlink is developed.

The ground antenna is a circular paraboloidal dish. This
assumption is intended only as a starting point for
other designs; a circular beam shape may not be best
for this application. We shall design both tracking and
nontracking systems. In a tracking system the antenna
stays pointed at the spacecraft for the length of time
required by the detection process. In a nontracking
system the antenna is pointed at the correct declination
on the meridian and the spacecraft sweeps through the
beam. Thus detection time is limited by the beam-
width. The antenna has to be tilted slightly from day to
day or week to week.

A GaAsFET receiver is used. See Table 2 for noise
temperatures.

(6) Doppler and Doppler rate uncertainty are critical to a

(7
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MFSK system. The signal must hold still long enough
for it to be located. Let v be the component of vehicle
acceleration provided by the SEPS. We assume a Dop-
pler rate error f given by

[

f=2 @)

>

where A is the wavelength. This is an upper bound for
the error that would occur if the SEPS were to quit
entirely or even start blasting in the wrong direction.
Our Doppler uncertainty bandwidth W is computed by
letting f accumulate for one day:

W = 86400 f (3)

We compute a maximum SEPS acceleration of 1.8 X
10~4 m/sec? during the SEPS cruise II, 1986.0 to
1988.4 (Section V below). This gives

f = 0.0028 Hz/sec, W = 240 Hz at S-band 4
f = 0.010 Hz/sec, W = 870 Hz at X-band (5)

It is assumed that the prediction errors of all other
contributions to Doppler and Doppler rate are less than
these numbers. To be conservative we shall make the
bandwidth of the detection system at least W. Actually,
the system might be able to get by with less bandwidth
because a large frequency deviation is itself cause for
alarm. Therefore, a DSN tracking session would be
scheduled whether or not the surveillance system finds
the signal.

A commercial FFT spectrum analyzer with 256 chan-
nels and a band analysis mode is assumed. No time
window shaping is used; we found that the uniform
window performs better than a hanning window. In
the system of Fig. 1 we use a heterodyne frequency f),
outside the nominal uncertainty band to avoid foldover
of the spectrum.

The detection strategy uses “L-look” spectral analysis
and threshold detection (Ref. 3) as follows: The band-
width b of an analyzer channel must satisfy 256 b > W,
Each data segment of duration 1/b results in a spec-
trum; the system sums L of these spectra and declares a
signal present if the summed output of some channel
exceeds a certain threshold above the average channel
noise power. Thus T, = L/b. Once f, or f, is found,
the analyzer bandwidth can be reduced for faster detec-
tion of the other frequency. In fact, the spacecraft

51



might simply spend less time on f, than on f,. Acquisi-
tion would be made on f; (perfect word sync as-
sumed), then f, would be detected with a narrower
bandwidth. Other schemes suggest themselves; here we
shall examine only the acquisition problem.

Other assumptions about the mission appear in Sections IV
and V.

lll. Sample Design Parameters

Table 1 gives the numerical parameters that define four
possible surveillance systems. For both S-band and X-band we
have designed a tracking system and a nontracking system. The
tracking systems, in which the antenna follows the spacecraft
for as long as the detection system needs to see the signal,
represent the lowest antenna gains consistent with a detection
error probability of 1074, This minimum gain is approxi-
mately proportional to the square root of the Doppler rate
error f (Eq.(29) below). Antenna diameter is 2.3 m for
S-band, 0.8 m for X-band. The nontracking systems, in which
the spacecraft sweeps across the stationary antenna beam, use
slightly larger antennas (3 m for S-band, 1.2 m for X-band)
because the reduced detection time requires more signal
power. While the nontracking systems are mechanically less
complex than the tracking systems, they are also less flexible
and reliable because they have only one brief shot per day at
the spacecraft.

No margins have been built into these designs except for
those created by our approximations (positive, we hope).
Actual systems might have to use antennas with higher gains
and narrower beams.

IV. Power-to-Noise Ratios

Using a design control table format (Table 2), we derive the
ratio P/N,, for an ideal isotropic ground antenna, where

P

carrier power

N, = one-sided noise spectral density

Maximum range, 5.8 X 108 km (3.9 AU), is assumed.

The results are

54X 107% sec™! S-band

6.0X 107% sec™!

i}

X-band

52

V. SEPS Acceleration
Standard rocket equations (Ref. 4) give

2P
VT Mgl

where

v = vehicle acceleration due to rocket propulsion

P = power expended on propellant

M = vehicle mass

I = specific impulse = V/g, V' = exhaust speed
g = Earth gravity, 9.8 m/sec?

Near the end of the long SEPS cruise, just before the Tempel 2
rendezvous, 3 thrusters will be used with 10 kW available to
them. We estimate P = 5630 W, M = 2200 kg, = 2940 sec.
Therefore,

p = 1.8 X 107% m/sec?
At the time of greatest range, 1987.7, we estimate
b = 63X 107° m/sec?

To be conservative we shall design for a combination of
maximum acceleration and maximum range.

VI. L-Look Spectral Analysis

This section is about threshold detection by a spectrum
analyzer of a corrupted sine wave in white Gaussian noise. For
a pure sine wave, see Ref. 3. Here, we attempt to account for
the degradations due to (1) position and drift of the signal
relative to nearby analyzer channels, and (2) short-term oscilla-
tor phase jitter. Our analysis is approximate and incomplete,
representing the best we have been able to achieve in the time
available. A rigorous treatment would be a research project.
Throughout, we neglect the effects of sampling.

A. Analyzer Channel Outputs

Let X be the (suitably normalized) sum of L successive
outputs of a particular analyzer channel of width b. Then X is
approximately a scaled version of a noncentral chi-squared
random variable with 2L degrees of freedom (Ref. 3). Its mean
and standard deviation are approximately



E(X) = Nob +P' = Nob(1+7) ©)

_ NOb 7
a(X) =L Vi+2r (7

where r' = P'/(N,b) and P’ is the average signal power in the
channel during the L looks. If the channel contains only
noise then r' = 0, else

8)
r -
Nyb
where G is the loss (<1) from position and drift of the
signal during the L looks, and G, is the loss from short-term
jitter of the spacecraft oscillator. Because these two losses are
actually intertwined, they deserve a unified treatment. For the

present, we simply compute them separately and multiply
them.

B. Position and Drift Loss G,y

This loss depends on the Doppler rate error f In time L/b
the signal frequency drifts by Lf/b; in units of the channel
width b the drift width is

5 = )

Let the frequency origin be centered in the channel. Let mb be
the signal frequency at the midpoint of the L-look time
interval. If m =0 the midpoint of the frequency drift is at the
center of the channel; if m = 1/2 the drift midpoint is at an
edge of the channel. We call these cases the center case and the
edge case. If the drift during a single look is much smaller than
b, then G, is approximately the average of sinc? (nf/b) over
the drift interval; thus

1 m*8 2 sin mu | 2
Gpd = Gpd (m, 8) =»§/ (—;u——) du (10)
m

-5 /2

C. Jitter Loss Gi

Using a spectrum analyzer, first observe a perfect sine wave
whose frequency is centered in one of the channels. Then
replace the sine wave by a real oscillator having the same
average power. Because of short-term phase jitter, the height
of the spectral peak will decrease. According to Ref. 2, mea-
surements of S-band transmitters have placed this “‘spectral

mean loss” between 0.3 dB and 1.5 dB. According to Ref. §, it
is difficult to include this loss in performance evaluations
because little is known about the exact characteristics of phase
jitter. We shall nevertheless use the information in the Allan
variance plot (Fig.2) to obtain a theoretical estimate of the
jitter loss G;. The result will put an upper bound on the
long-term Allan variance of, and a lower bound on the channel
bandwidth b.

If the oscillator were modulated by either a stationary
phase process 6(z) or a stationary frequency process 6(r) the
situation would be in hand because the oscillator output

x(¢) = cos [2nf 1+ 6() + 6,1

would be stationary. (We assume 8 is uniformly distributed
and independent of 6(z)). Assuming that §(¢) is Gaussian,
Middleton (Ref. 6) and others compute the spectrum of x(r)
given the spectrum of 8(z) or 8(2).

Unfortunately, the typical Allan variance behavior Af/f, =
0, = const for large 7 indicates the presence of nonstationary
“flicker of frequency” modulation. Previous theory does not
apply. Since the behavior Af/f,, = const/r for small 7 indicates
that a stationary phase process is also present, we adopt the
following model for 8(¢):

0(r) = ¢(r) + (1)

where ¢(z) and Y(¢) are independent Gaussian processes, ¢(?) is
stationary, and y(#) has stationary second differences. The
relevant second moment properties of ¢(¢) and y(¢) are charac-
terized from Fig. 2 by

() = 3Qnfya 1) (1)
202

s, ,Qnf) = ——2- 12

ponf) = 8 (12)

where S, is the one-sided spectral density of ¥(r). The /13
spectrum has a rigorous meaning in the theory of processes
with stationary nth differences. Eq. (11) does not depend on
the shape of the spectrum of ¢(f) as long as 1/, is much
smaller than the bandwidth of ¢(z). One obtains Egs. (11) artd
(12) from conventional stationary-process formalism by inte-
grating the Allan-variance filter response times the spectral
density of 6(r).
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In Appendix A we derive the following approximation for
the jitter loss:

2
1 L8t 1

—) = 2 — - —
In (G) (211f00y) ( 3 + oy 1n4)b2) (13)

]

Although the analysis is not rigorous, the author believes that
Eq. (13) shows the main dependencies of the loss on the
Allan-variance turnover point (7, 0,) and the channel width
b. The first term on the right comes from the stationary noise
¢(r) and is already well understood. The second term comes
from the flicker-noise jitter y(r); as b gets smaller, the integra-
tion time gets longer, and the effect of the low-frequency
phase variations predominates.

Within the confines of the analysis, Eq. (13) actually gives
an upper bound for the loss. We suggest using it as long as it
indicates a loss below about 2 dB.

D. Detection Criteria

We set a detection threshold Nybn, where 1 < n<r'. A
signal is detected if the outputs of a set of adjacent channels
are more than N,bn, and all other channel outputs are less
than Nyb .

Fix an error probability €. Anticipating the discussion
below, we define z,,z,,and z, by

0zy) =+, 0G)) = €.0¢,) = Ve (14)

where # is the number of channels and Q(z) is the probability
that a standard Gaussian is more than z.

Suppose that no channel has a signal. The probability of
false detection is approximately

P, = nP{X>N bnlt' = 0}

Setting Pr, = € we obtain from Appendix B that

¥o

n=1+—— (15)

N/

where
xo = 20 V1= 1/AL) +3 (20> = DV T/GL)  (16)
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Since Nyb can be estimated as the average channel power, Eq.
(15) determines the threshold.

Suppose that a signal is present. The probability that we
miss it or that a spurious channel output exceeds the threshold
is approximately

Il rx<wonir = vy, (17)
k

where 7, is the effective SNR in the kth channel. We require
the first term of Eq. (17) to be at most e. This term depends
on the drift center m and the drift width § = Lf/bz. For a
given f, & is at our disposal but m is not. Thus our detection
strategy has to work for all m. Without loss of generality we
can assume 0 <X m < 1/2. Lack of time forces us to consider
only the center case m = 0 and the edge case m = 1/2. Also, we
assume & <2 so that at most two channels have significant
amounts of signal.

For the center case we consider only one channel in Eq.
(17). Setting

P{X <N bn}=e

We obtain from Appendix B that

I (18)

where
x, =2, VT B0 - 3G,2 - DVEGLD  (19)

_1+2F
) (1+7)? 20

and r' is calculated using G,4(0, 8). From Egs. (15) and (18)
we get the detection criterion

!

x, tx, V137
r = —

VL

21

for the center case.



In the edge case the two channels on either side of the drift
midpoint m = 1/2 see an equal amount of signal. Therefore we
set

[PLX<Npn}]? = ¢
which leads as before to

x2\/1+2r
n=1+r-———"— (22)
N/

where

x, = 2, VT BAD)- 3,7 - DVEGD  (23)

and r’ is calculated using Gpa (1/2, 6). The detection criterion
for the edge case is

r' = (24)

Let ¢ f, and b be fixed. Given & (or L) the right sides of
Eqgs. (21) and (24) depend slowly on 7, so they can be iterated
to get the required r’ for the center and edge cases. Computing
Goa (m,5) (m =0 and 1/2) and G; we get the channel SNR

P r'

y = —=

ob GpdG].

as two functions of 6, say r (8) (center case) and r,(6) (edge
case). Since we don’t know which case holds we must choose
the worst one by setting

r5) = max [r (6),r,(5)] (25)

Finally, we get the optimum values of § and L, and the
minimum required 7, by minimizing Eq. (25):

Fin r(6opt) = min r(8) (26)
, 5<2
b2
_ _opt
Lype = ~2— @)

In the two examples below it turns out that the point (60pt,
Fmin) I8 the intersection of the r = r,(8) and r = r,(§) curves
(Fig. 3). For 6 <&, r,(8) is larger; for 6 > 6,4, 7,(8) is
larger. For both examples, &, , = 1.6 approximately.

We can explain this from another point of view. For a given
r there is a range of L that will support detection with a given
error probability. If L is too small there is not enough time to
build up the signal over the noise. If L is too large the drift
spreads the signal over several channels. The minimum r is the
one that shrinks this L-range to a single point.

Suppose now that r >r ... Assume that for § <&, the

edge case applies: ,(86) > r,(8). The required L can be found
by iterating

L =

(28)

!

[x0+x2\/—1:2—r'}2

y

whose right side depends slowly on L.

E. Approximations

Put e = 1074, 6, = 1.6, G, ;= G,4(1/2,0)= 0.41, and
compute G, from Eq. (13). Then

8

(P/NO)min = rminb = \/fn (29)
Gpde vV 6Opt
L 8 |2 b
T, === (30)
a [GpdG]} P

for PIN, = (PIN) ;.-
VIl. Tracking and Nontracking Systems
A. Design Equations

From Ref. 7 we extract some nominal relationships for
parabolic antennas. Let d = diameter, A = wavelength, 0 =
angle off-axis. Then

On-axis gain G, = (7n/4) (d?/\?)

Half-power beamwidth 6, = 63 \/d deg

Off-axis gain G(8) = G exp (-1n 16 62/62)

We get the weakest possible tracking system by specifying
G, such that

G r. =r

a’iso min
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where i = (P/Ny);s,/b. The only a priori restriction on the
word time T, = L, /b= 8 b%/f is the tracking time
available.

If the antenna is fixed, the spacecraft simply passing
through the center of the beam, then word time is limited. We
arbitrarily designate the available antenna time by

T = 24060 sec
a a

the time it takes a point on the celestial equator to traverse an
angle 6,/2. If the r_;  system happens to have 7, > T, then
we must increase G, until T, < T,. This can always be done
because T, = L/b is roughly proportional to 1/r?, whereas T,
is proportional to 1/A/r. We also have to account for the
varying gain as the spacecraft sweeps across the beam. Since
the average value of G(6)/G, for 101<6,/2 is 0.81, we shall
simply insert this extra loss into Eq. (8). This is a makeshift
adjustment, of course.

The system that makes T, = T, can be obtained from the
following iteration on &, starting with § = 1:

2 N
L =%
f
17700%r, b2
1S0O
A
t SENE
r'=081G,G,, (1/2,8)r
2/3
5 z_f_[ r'L2 } /
2 7
b x0+x2 Vv I1t+2r )

A T, =T, system leaves little room for error; there are at
most two chances to acquire the signal. We have computed this
option simply to find out what can be done with a nontrack-
ing parabolic antenna. One might design anr, ;. system using
a nontracking fan-beam antenna with the wider dimension of
the beam oriented east to west. The beamwidth would allow
the spacecraft to stay in the beam for several word times. The
antenna would probably have to be adjusted daily in declina-
tion.
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B. Derivation of the Examples

1. Sband. Recall that f = 0.0028 Hzfsec, (PIN,).,, =
537X 10=% sec™!. From Eq. (4) we choose an analyzer
bandwidth of 250 Hz (the next bandwidth above 240 Hz for
the analyzer we have in mind). Since we assume n = 256
channels, we have b = 1 Hz. Equation (13) with o, =10710,
7y = 0.5 sec gives G; = 0.81.

To derive the r ;. (tracking) system we plot r vs. § for the
center and edge cases (Fig. 3). The intersection gives opt =
1.59, rin = 0.925. Then L = 60ptb2/f= 568 looks, T, =
L/b = 568 sec. The antenna parameters are G, =
1723,d =230 m, 0, =3.56 deg, and T, = 427 sec.

rmin/riso -

The iteration Eq. (31) gives the T, = T, (nontracking)
system. Parameters are § = 0.909, L = 325 looks, G, = 2967,
d=3.02m,0,=2.71 deg,and T, =T, = 325 sec.

2. X-band. Start from f =10"2 Hz/sec, (P/N,);4, = 6.03 X
10=% sec™1. The analyzer bandwidth is 1000 Hz, so b =4 Hz.
Equation (13) with ¢, =3 X 107'!, 7, = 0.5 sec gives G, =
0.81. From Fig. 2 we get the r_;, system: Sopt = 1.63,7,in =
0.409, L = 2608 looks, T, = 652 sec, G,=2715,d =0.791 m,
0,=2.83 deg,and T, = 340 sec.

The parameters of the T, = T, system are § = 0.554, L =
886 looks, G, = 6387, d=1.21m, 6,=185 deg,and T, =
T, =222 sec.

VIll. Conclusions

Provided that certain assumptions about Doppler rate error
and spacecraft oscillator phase stability are met, an alternating-
tone signal from a spacecraft 4 AU away can be acquired by a
ground antenna a few meters in diameter, a receiver with noise
temperature of order 200 K, and a commercial 256-channel
spectrum analyzer. Although our design examples assume para-
bolic antennas, other types such as fan-beam antennas or
electronically steerable arrays should be studied, especially if
one wants to avoid mechanical tracking.

Our analysis has included an estimate of the effect of
oscillator flicker noise on MFSK detection. A preliminary
theory with a certain amount of heuristic argument has
yielded the approximation Eq. (13) for the spectral mean loss.
More work on this theory is needed to improve its accuracy.
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Table 1. Design parameters for ICE surveillance systems

S-band, S-band, X-band, X-band,
tracking nontracking tracking nontracking
Doppler rate error
f (Hz/sec) 0.0028 0.0028 0.010 0.010
Spectrum analyzer
bandwidth (Hz) 250 250 1000 1000
Word time T4
(sec) 570 330 650 220
Antenna gain
Ga (dBi) 324 34.7 343 38.1
Antenna
diameter d (m) 2.3 3.0 0.79 1.2
Half-power
beamwidth ea (deg) 3.6 2.7 2.8 1.9

Table 2. Design control table

S-band X-band
1. RF power to antenna, dBm
Transmitter power, dBm 37.0 40.0
Circuit losses, dB -0.7 -0.7()
2. High-gain antenna gain, dBi 28.5 39.7
3. Space loss, dB
loss = A2/(47R)2, R = 5.8 X 108 km -275.0 -286.2
A= 0.13mor0.356m
4. Power received by isotropic antenna, -210.2 -207.2
dBm (1 +2+3)
5. Noise spectral density, dBm/Hz -177.5 -175.0
Ng = kT, k = 1.38 X 1020 mW sec/K
GaAs FET front end, K 120 220
Noise from ground, cosmos,
atmosphere, K 10 10
6. P/NO, isotropic antenna, dB sec] -32.7 -32.2
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Appendix A

Loss From Oscillator Phase Jitter

The foundations of the second-moment theory of processes
with stationary nth differences are set out by Yaglom (Ref. 8).
These processes provide rigorous models for phenomena which
appear to have spectral densities behaving like 1/f* as f— 0,
where o < 2n + 1. For our case, a = 3, so n =2 suffices while
n =1 does not.

Let 0(¢) (the phase of an oscillator) be a process with
stationary second differences. Its spectral representation is

0(t)=a, ta,t +%cz‘2 —/ [ei? - 1 —F(w)iwt]iz—(—o;*)

—Ww

(A-1)

where ¢ is a constant, ¢, and &, are random variables, F(w) is
a bounded function satisfying

F(w) =1+0(lwl), w=0

= 0(1/lwl),

w—>too

(A-2)

and Z(w) is a complex-valued process with orthogonal incre-
ments, related to the two-sided spectral density % S,, (w)
by

126 - 2 = [ dw
ElZ(w)- Z(w)l —2/ w Sos(w)zﬂ (A-3)
w
The spectral density must satisfy
e S (W) dw <o (A-4)
e 14 Q?

We have assumed that the measure given in Eq. (A-3) (the
spectrum of the generalized process 6 (¢)) is absolutely contin-
uous.

Changing F(w) while retaining Eq. (A-2) simply adds a new
component to a,, which is just a constant of integration, a
frequency offset. If one formally integrates the spectral repre-
sentation of a stationary process twice, one obtains Eq. (A-1)
with F(w)=1. Such a representation for 6(r) is valid only if
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6(¢) has so little high-frequency power that 6(r) exists. When
one attempts to do calculations, one gets results that depend
strongly on the high-frequency components of 6(7), which we
know intuitively to be irrelevant to the situation. The instanta-
neous oscillator frequency is perhaps meaningless. It is essen-
tial to use the correct version Eq. (A-1) with a cutoff function
Flw).

We now compute an estimate of the mean loss incurred
when measuring the spectrum of an oscillator with phase 0(¢).
We can assume that the output has been heterodyned to
baseband and that we are measuring the power in a frequency
band of width b centered at zero frequency. Let bh(b?) be the
time window of the measurement, where A satisfies

1l

h(x) = h(-x) 2 0

fneydx = 1, fx*hixydx <

For later use define

H(y) = feixy h{(x) dx

The mean spectral loss is given by

G, = JfEOOON psnprydsdr  (AS)

Assume that 6(¢) is a Gaussian process. Then
E 0700 = exp (— %D(s,t))

where
D(s.t) = E[0(s) - 6(D)]*

Since b*h(bs)h(bt) dsdt is a positive measure with total mass
1, Jensen’s Inequality gives

1n-(% < % [[DG.tyb2ns)n(brydsar— (A6)



To first order in D(s,t), the two sides of Eq. (A-3) are equal.

In computing D(s,t) from Eq. (A-1) we assume that ¢ = 0,
a, =0. The assumption ¢ =0 means that there is no average
frequency drift. The assumption 4, =0 means that we don’t
want a constant frequency offset to affect the measurement.
Also, it is convenient to replace F(w) by F(w/b).

Let
W(t,w)=eC -1~ jwt F (%)
Then
D(st) = ) W(s,w) - W(t,w)I2S do
(S>t) - . I (S,(O) (f,&))| ()9((‘0)?
and
1 T w dw
- < = e -
In - f V(b)SM(w) 2 @A)
7 0
where

V) = [0 - HO) - dyFO)EG) d

We still consider the function F to be at our disposal.
Fixing y we find the number F(y) that minimizes V(y). This is
done by projecting e?x¥ - H(y) onto the vector ix in the space
L?[A(x)]. The answer is

) = L0 (A$)

H ()
H' (0)

V(y) = 1 -H(y)* + (A9)

It happens that the function F given by Eq. (A-8) satisfies Eq.
(A-2). The function V(y) given by Eq. (A-9) is a high-pass
frequency response, and the right side of Eq. (A-7) is a
“high-pass variance” of 6(t) with cutoff frequency propor-
tional to b.

Concerning the way we have played around with F, we can
say only that it seems to be the right thing to do. Since
changing F only changes the offset frequency a, and the effect
of frequency offset is covered by the loss G, ;. we feel free to
minimize the effect of the offset on G;. We want the average
frequency during the measurement to be zero in some sense.
More work on this part of the theory is needed.

Now set

h(y) = 1, Iyl < 1/2

= 0, elsewhere

- A
Sgplw) = Sw(co)+w3

where ¢(f) is a stationary process with bandwidth much
greater than b, so that V{(w/b) passes most of the energy in
#(t). Then Eq. (A-7) becomes

g < 0%(6) + oy (a10)
j 2nb? 0 y3

By numerical integration we find that the last integral is 1/36
(approximately). Substituting for 62(¢) and 4 from Egs. (11)
and (12) we get Eq. (13).
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Appendix B

Chi-Squared Tail Estimates

Equation 26.4.31 of Ref. 9 is used to express the tails of a
noncentral (or central) x? in terms of the tails of a standard
Gaussian. For our situation there are v = 2L degrees of free-
dom and a noncentrality parameter A = 2L#’ (or zero). The
approximation requires L > 50. Let X be a scaled version of
the noncentral x2, define X* = [X - £(X)]/o(X), and let Z be
a standard Gaussian. Given a probability p define x and z by

PX*>x}y=P{Z>z}y=p

Straightforward manipulation of the approximation in Ref. 9
gives the approximation
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(B-1)

x = 2/ T=Bl@L) +3 (2 - 1)V B(AL)

where

_ 1+ 2r'
(1+7)?

To get an approximation for the lefthand tail P {X* < x},
replace x by -x and z by ~z in Eq. (B-1). The righthand tail of
X is heavier than the Gaussian tail; the lefthand tail of X is
lighter.



